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Abstract. The aim of the present work is to investigate numerically the aeroacoustics of a vortex pairing in the

temporal development of a free shear layer. Direct numerical simulation with high accuracy finite difference scheme

was employed in this research. A characteristic-type formulation of the compressible 2D Navier Stokes equations

was used. One of the main challenges found on the development of this research was to produce a single vortex

pairing in the middle of a wide computational domain. Time development of mixing layers adopts the periodic

boundary condition in x-direction, what makes it more difficult to reproduce a single vortex pairing inside a wide

domain. The domain must be large enough to provide a clear observation of the acoustic field produced by the

pairing. The simulation produced a double spiral structure, corresponding to the rotating quadrupole associated

to two co-rotative vortices, which agreed with the literature on the vortex pairing aeroacoustics. Some different

behaviors of the acoustic field can also be observed for this pairing geometry.
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1. Introduction

Flow generated sound is a serious problem in many engineering applications. It can cause human discomfort;
it affects the stealth operation of military vehicles; etc. Due to the current aircraft traffic, community noise
concerns at busy airports constraint the operation of noisy aircraft. In response to this fact, FAA also included
stringent regulations to the aircraft noise level operation and certification [Wang et al., 2006; Colonious and
Lele, 2004]. Airframe noise is the major responsible for the sound level of landing aircraft, since the propulsion
system is near to the lowest power level. The impact of those mentioned facts on the worldwide aircraft industry
is the greater attention paid to noise in the design stage, leading to the need of an efficient noise level prediction
method.

Hydrodynamic instability phenomena are determinant to a wide family of aerodynamically generated sound.
This strong link is due to the transient and periodic nature of both the Hydrodynamic instability and the
aerodynamic sound generation phenomena. Two classical cases of aerodynamic sound generation are the vortex-
shedding and vortex pairing [Wang et al., 2006; Colonious and Lele, 2004]. The vortex pairing phenomenon
follows a chain of events starting with the primary disturbance amplification leading to the production of vortex
structures, which is the classical Kelvin Helmholz instability mechanism. Those small primary disturbances
exponentially grow in time or space and reach the saturation point, when the vortex structures are formed.
Thus, when the vortex distribution geometry is already established, the secondary instability takes place leading
to the pairing of the primary vortices. Those steps are better explained in the following sections.

Vortex pairing is a remarkable phenomenon that generates noise in the jet flow case [Colonious et al., 1997;
Colonious and Lele, 2004; Wang et al., 2006]. In Colonious et al., 1997 an investigation of the sound radiation
in a mixing layer under spatial development was performed. Their work used one fundamental frequency
disturbance and its three subharmonic frequencies (f/2,f/4 and f/8) which would lead to three pairings. Once
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a shorter streamwise domain was adopted, only two pairings were observed. Direct Numerical Simulation (DNS)
results filtered with the pairing frequency and subsequent comparison with the results obtained with the Lilley’s
acoustic analogy (using DNS data to compute the source terms) were shown. Colonius, et. al. concluded,
for the free shear layer problem, that acoustic sources are better modeled by modulated wave packets in the
streamwise direction than by the Lighthill’s compact quadrupole acoustic sources.

A double spiral structure, corresponding to the rotation of a quadrupole source type was obtained by Large
Eddy Simulations (LES) of a free shear layer under spatial development in Bogey et al., 2000. Bogey, et. al.
attributed this rotation of the quadrupoles sources to the rollup of the two co-rotative vortices, i.e., the rotation
of the vortex structures during the pairing. By comparing the wave pattern generated by the rotation of two
close rigid objects on a deep-water surface, one can find analogous to those structures reported in Bogey et al.,
2000. This analogy can be done due to the vortex structure momentum, since during the pairing begining there
is no much mixture between the two vortices.

In numerical simulations of sound generation, Colonious and Lele, 2004; Colonious et al., 1997 showed
typical discrepancies between the disturbances near the vortical region and the acoustic disturbances at the far
field region of 4 or even 5 orders of magnitude lower. This shows that, the code accuracy is strongly relevant
for aeroacoustic study purposes. A code developed by Germanos and Medeiros, 2005 was used to investigate
the flow instability of a compressible shear layer. The code accuracy was an important concern in their work.
They used a high order compact finite difference scheme for computing the spatial derivatives and a 4th order
Runge-Kutta scheme for the time integration. Germanos and Medeiros, 2005 verified the code against the Linear
Stability Theory (LST).

The current work presents the tests performed to validate and verify the code used to investigate the vortex
pairing aeroacoustics. The strategy adopted in this code was the DNS with a 6th order compact finite difference
scheme, proposed by Lele, 1992. A 4th order Runge Kutta integration scheme was also used in this code. The
same code developed by Germanos and Medeiros, 2005 was used with a different formulation. The formulation
adopted was proposed by Sesterhenn, 2001.

In the present work, the pairing simulations were performed under temporal development. The domain used
for the simulations was large enough to capture the acoustic far field. Qualitative acoustic source characteri-
zation, such as the directivity and the acoustic structures caused by a single pairing, could be done with the
simulation results. The aim of this analysis is to investigate the sound source features found by Colonious et al.,
1997 and Bogey et al., 2000. Apparently, the time development of a single pairing in a wide domain has not
been reported previously in the literature. Once we characterize the acoustic source of sound of a single pairing
it can become easier to understand more complex cases, such as a shear layer under spatial development with
more than one pairing.

2. Linear stability theory

The aim of this section is to show the results of a verification test with comparisons with the LST prediction.
The case study is the Kelvin-Helmholz instability in a temporal development of a 2D free shear layer problem.
The LST predicts the time amplification of eigenfunctions for a time constant base-flow. To keep a constant
base-flow in time, a source term was used for the x-direction momentum equation in such a way that no viscous
enlargement occurred in time. A 0 < x < 7;−14 < y < 14 domain was adopted with 32 points along the
x-direction and 128 points along the y-direction. Periodic boundary conditions for the x-direction and the
free-slip boundary condition for the y-direction were used. A similar validation methodology was employed by
Fortuné, 2000. The base-flow can be viewed in Fig. 1.

The problem set-up is:

δw = 1; cref = 340.21 Ma = 0.05; Umax = Macref ;

u(x, y, t = 0) = Umax tanh
(

2y

δw

)
+ up(x, y); v(x, y, t = 0) = vp(x, y);

Re =
ρUmaxδw

µ
= 80;

where: δw is the mixing layer vorticity thickness; cref is the reference speed of sound; Ma is the local Mach
number on the upper free stream; up(x, y) and vp(x, y) are disturbances of the velocity components in x and y
directions, respectively. For the nondimensionalization, the reference scale is δw, the reference velocity is Umax,
time is non-dimensionalized by δw

Umax
, entropy by cp, density by the reference density (ρref ), temperature by

Tref = c2
ref

γR and the pressure by the reference dynamic pressure (ρrefU2
max). The disturbance vp used was:

vp(x, y) = e−σ( y
δw

)
[
A0 cos

(
2πx

Lx

)]
.
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Figure 1: Base-flow sketch of the velocity profile and the δw definition.

By assuming the disturbance field as incompressible, i.e., ∂up

∂x + ∂vp

∂y = 0, an appropriate up disturbance field
could be obtained.

For this set of parameters defined above, the linear stability theory predicts a amplification rate of 0.31,
i.e., any disturbance variable should grow in time as: e0.31t. The exponential growth region and the saturation
point of the disturbance can be seen in Fig. 2. This figure shows the LST prediction and the simulation result.
The CFL number employed in this simulation was 0.55 and the viscous criterion stand beneath 0.002. The time
development of the vorticity field obtained from this simulation is showed in the frame sequence of Fig. 3. The
saturation point starts near the frame 3(f), i.e., when the vortex takes its recognizable shape.

3. Formulation

The aim of this section is to provide a clear understanding on the fundamentals of the characteristic-type
variables proposed by Sesterhenn, 2001. The formulation will adopt the classical notation: ρ, c, p, u, s as the
density, speed of sound, pressure, velocity and entropy, respectively.

3.1. Thermodynamic state equation and properties

In the present work we shall assume the thermally ideal gas equation:

p = ρRT. (1)

Differentiating equation (1):

dp = dρRT + ρRdT. (2)

Using the fundamental equation of enthalpy and the thermally ideal gas hypothesis (dh = cpdT ) we can
write:

dh = cpdT = Tds +
dp

ρ
. (3)

Replacing (dT ) and (T ) in (3) from the equations (2) and (1), respectively, we obtain:

cp(
dp

ρR
− pdρ

ρ2R
) =

p

ρR
ds +

dp

ρ
.
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Figure 2: Time development predicted by the simulation and predicted by the LST.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3: Time sequence of the vorticity field, the first frame is at t = 0.0551 δw

Umax
the time step between each

frame is ∆t = 0.174 δw

Umax
.

Now, using (R = cp − cv) and
(
γ = cp

cv

)
we can write:

dp
1

γ − 1
=

p

R
ds +

γRT

γ − 1
dρ.

Thus, using
(
c2 = γRT

)
we obtain equation:

dρ =
dp

c2
− p

c2cv
ds. (4)

3.2. 1D Equations of motion

The one dimensional Euler equations of motion for a plane wave, for the reversible case, are:

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0 (5)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+

∂p

∂x
= 0 (6)

∂s

∂t
+ u

∂s

∂x
= 0. (7)
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Again, using the hypothesis of thermally ideal gas, we can now plug Eq. (4) into the term ∂ρ for the
continuity equation (5):

∂p

∂t
+ u

∂p

∂x
+ ρc2 ∂u

∂x
− p

cv

(
∂s

∂t
+ u

∂p

∂x

)
= 0 (8)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+

∂p

∂x
= 0 (9)

∂s

∂t
+ u

∂s

∂x
= 0. (10)

The entropy equations (7) and (10) assumes that the flow is under a reversible process, i.e., the entropy
rate of change for a given point is only caused by the convection of entropy. Likewise, it assumes that there
is no viscous dissipation mechanisms and that there is no entropy generation. In fact, the entropy term in the
continuity equation (10) could be simplified. However, to provide a wider valid solution we shall keep this term
and generic flows, such as irreversible flows, could be simulated by the continuity equation as it stands.

Multiplying the Eq. (8) by
(

1
ρc

)
, adding

(
1
ρ

)
times the Eq. (9), using

(
cv = cp

γ

)
and

(
c2 = γRT

)
, one can

write Eq. (11). Now with analogous operations but instead of adding, subtracting
(

1
ρ

)
times the Eq. (9) we

can write Eq. (12):

(
1
ρc

∂p

∂t
+

∂u

∂t

)
+ (u + c)

(
1
ρc

∂p

∂x
+

∂u

∂x

)
− c

cp

(
∂s

∂t
+ u

∂s

∂x

)
= 0 (11)

(
1
ρc

∂p

∂t
− ∂u

∂t

)
+ (u− c)

(
1
ρc

∂p

∂x
− ∂u

∂x

)
− c

cp

(
∂s

∂t
+ u

∂s

∂x

)
= 0 (12)

∂s

∂t
+ u

∂s

∂x
= 0. (13)

Using the fundamental enthalpy equation (3), the differential form of speed of sound
(
δT = 2c

γRδc
)

and the

speed of sound definition, the value
(

δp
ρc ± δu

)
can be written in the following form:

δp

ρc
± δu =

2
(γ − 1)

δc± δu− c

γR
δs.

Using the definition of Riemann variables
(
R± = 2

(γ−1)c± u
)

we can write Eq. (14):

δp

ρc
± δu = δR± − c

γR
δs. (14)

For the case of homentropic flow (δs≡0), using (14), both the Eq. (11) and Eq. (12) can be written as
functions of the Riemann variables:

∂R±

∂t
+ (u± c)

∂R±

∂x
= 0. (15)

Eqs. (15) state that the Riemann variables (R±) are conserved along the characteristic paths
(

∂x
∂t = (u± c)

)
in space and time. Due to this conservation, for homentropic flow, Riemann variables are named Riemann
invariants.

Now, defining X±:

X± = (u± c)
∂R±

∂x

X± = (u± c)
(

1
ρc

∂p

∂x
± ∂u

∂x

)
; (16)
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X± represents the (R±) rate of change in time. Observe that Eq. (15) traduces the conservation of the quantity
(R±) traveling with the relative speed of sound (u± c). Thus, X± represents the acoustic wave in the linear
analysis. Through this variable one may explicitly handle the acoustic wave propagation phenomena.

Analogous interpretation of the correlations between the X± terms and R± terms for (δs = 0) along the
path

(
∂x
∂t = u

)
, i.e.

(
∂s
∂t + u ∂s

∂x = 0
)
, and for irreversible flow cases

(
∂s
∂t + u ∂s

∂x = σ
)

can be seen in Sesterhenn,
2001.

Now, one shall diagonalize the set of Eqs. (8), (9) and (10) by adding and subtracting to the Eq. (8), c
2 times

the Eq. (9). This operation basically added zero to the continuity equation, but it will enable us to explicitly
write the acoustics terms in the continuity equation:

∂p

∂t
+

ρc

2

[
(u + c)

(
1
ρc

∂p

∂x
+

∂u

∂x

)
+ (u− c)

(
1
ρc

∂p

∂x
− ∂u

∂x

)]
− p

cv

(
∂s

∂t
+ u

∂p

∂x

)
= 0.

By performing analogous operation, i.e. adding and subtracting to the Eq. (9) 1
ρc times the Eq. (8), one can

write:

∂u

∂t
+

1
2

[
(u + c)

(
1
ρc

∂p

∂x
+

∂u

∂x

)
− (u− c)

(
1
ρc

∂p

∂x
− ∂u

∂x

)]
= 0.

With the two above equations and defining the entropy wave term as: Xs = u ∂s
∂x , we can write the 1D Euler

equations in the wave like form:

∂p

∂t
+

ρc

2
[
X+ + X−]− p

cv

(
∂s

∂t
+ Xs

)
= 0 (17)

∂u

∂t
+

1
2
[
X+ −X−] = 0 (18)

∂s

∂t
+ Xs = 0. (19)

Algebraically, there is no difference between the set of Eqs. (17), (18) and (19) and the set of Eqs. (5), (6)
and (7). But in practice the first set of Eqs., 17, 18 and 19, enable to explicitly handle the wave terms. It makes
it easier to introduce the non-reflecting boundary condition.

Now, for illustration and definition purposes, suppose a coordinate system in which the x-axis grows from
left to right. For a subsonic flow case: X+ plane wave will travel towards x-direction, X− plane wave will travel
towards the opposite direction, Xs waves will travel with the same direction as the local velocity (u). This is
sketched in the Fig. 4 as a sound wave which travels from left to right (X+), another sound wave which travels
from right to left (X−) and, for a positive velocity u, an entropy wave which travels from left to right.

x

X-X+

u Xs

Figure 4: Characteristic-type variables scheme for a subsonic flow.

With this background of the characteristic-type variables for the 1D flow case provided by the present section,
we shall present the 3D flow case equations.
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3.3. 3D Equations of motion

Three-dimensional formulation can be derived by decomposing the Navier Stokes equations and performing
analogous steps given for the 1D formulation for each direction, i.e., diagonalizing the Navier Stokes equa-
tions. For brevity, we shall not give details of the necessary steps to obtain the full 3D equations. A detailed
characteristic-type formulation of the 3D Navier Stokes equations can be found in Sesterhenn, 2001. The 3D
set of equations written in the wave-like form are:

∂p

∂t
= −ρc

2
[(

X+ + X−)+
(
Y + + Y −

)
+
(
Z+ + Z−

)]
+

p

cv

(
∂s

∂t
+ Xs + Y s + Zs

)
∂u

∂t
= −

[
1
2
(
X+ −X−)+ Y u + Zu

]
+

1
ρ

∂τ1j

∂xj

∂v

∂t
= −

[
Xv +

1
2
(
Y + − Y −

)
+ Zv

]
+

1
ρ

∂τ2j

∂xj
(20)

∂w

∂t
= −

[
Xw + Y w +

1
2
(
Z+ − Z−

)]
+

1
ρ

∂τ3j

∂xj

∂s

∂t
= − (Xs + Y s + Zs) +

R

p

(
− ∂qi

∂xi
+ φ

)
.

With the wave terms, heat transfer term, viscous term and viscous dissipation term defined as follows:

X+ = (u + c)
(

1
ρc

∂p

∂x
+

∂u

∂x

)
; X− = (u− c)

(
1
ρc

∂p

∂x
− ∂u

∂x

)
;

Xv = u
∂v

∂x
; Xw = u

∂w

∂x
; Xs = u

∂s

∂x
;

Y + = (v + c)
(

1
ρc

∂p

∂y
+

∂v

∂y

)
; Y − = (v − c)

(
1
ρc

∂p

∂y
− ∂v

∂y

)
;

Y u = v
∂u

∂y
; Y w = v

∂w

∂y
; Y s = v

∂s

∂y
;

Z+ = (w + c)
(

1
ρc

∂p

∂z
+

∂w

∂z

)
; Z− = (w − c)

(
1
ρc

∂p

∂z
− ∂w

∂z

)
;

Zu = w
∂u

∂z
; Zv = w

∂v

∂z
; Zs = w

∂s

∂z
;

τij = µ

[
∂uj

∂xi
+

∂ui

∂xj
− 2

3

(
∇~V

)
δij

]
;

qi = −λ
∂T

∂xi
;

φ = τijEij ;

Eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

Observe that new terms which were not present in the previous formulation (1D flow case) have appeared
in the 3D flow case. Those terms are called momentum waves, Xi

uj (1− δij), and represent the injection of
xj-direction momentum due to its gradient in xi-direction.

A sketch of the acoustic wave terms belonging to the characteristic formulation of the 2D Navier Stokes is
showed in Fig. 5.

• • • ymax •

Y −

�� �O
�O
�O

• •

• X+
///o/o/o

xmin

• •
Y +

OO
O�
O�
O�

• • X+
///o/o/o •

xmax

• •X−oo o/ o/ o/ • •

Y −

�� �O
�O
�O

• •X−oo o/ o/ o/

• • •
ymin

Y +

OO
O�
O�
O�

• • •
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Figure 5: Acoustic wave terms in a two-dimensional domain

4. Anechoic boundary condition test

Non reflecting boundary condition is a challenge for the development of numerical studies in fluid mechanics.
Due to the wave like form of the Navier-Stokes equations, the acoustic waves are decomposed into terms with
different traveling directions. For the 2D case, the anechoic boundary condition can be implemented in an
explicitly way by imposing null incoming waves into the domain. For example, to apply the anechoic boundary
condition at the boundary y = ymax showed in Fig. 5, it is necessary to impose Y − = 0 along y = ymax.

The test presented in this section used a Gaussian pressure distribution as the initial condition. The pressure
variation amplitude was 10% of that at the far field. The initial entropy field was uniform and the velocities
were null. This initial condition could represent a time instant in which two acoustic waves with the same
amplitude cross each other. At y = −0.5 the anechoic boundary condition was applied, at y = 0.5 the rigid
boundary condition was applied. Fig. 6 shows the time development of the pressure field. The color scale
employed presents from the overall maximum to the minimum pressure.

Figure 6: Contour plot of the pressure field development in t and y.

Two tests were performed:

(a) First test case: For a first test, a reflection of 4.5% was obtained in the anechoic boundary. It means that
the spurious reflected acoustic wave had an amplitude below 5% of the acoustic wave amplitude outgoing
the domain. For this first test, the Neumman boundary condition was used for the pressure (∂p

∂y = 0), no
specified boundary condition was adopted for ∂v

∂y and it was subsequently computed Y − and Y + → 0 along
y = −0.5.

(b) Second test case: For a second test changing the advection scheme, i.e., using none specified boundary
condition for both ∂v

∂y and ∂p
∂y and subsequently computing Y − and Y + → 0 along the path y = −0.5, it

was possible to obtain a reflection rate below 0.08%.

Fig. 7 shows the development of the pressure field P (y) in time t. In Fig. 7(a) the color scale shows the
pressure level of the spurious reflection obtained by the technique used in test (a). In Fig. 7(b) the same is

8
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done for test (b) but the color scale is different to indicate the reflected wave. Through those two Figs. it is
possible to observe the different reflection amplitude obtained by tests (a) and (b).

(a) First test case (b) Second test case

Figure 7: Color scale ranging the pressure field caused by spurious reflection for cases (a) and (b). The scales
ranges from blue color (lowest reflected pressure level) to red color (highest reflected pressure level).

4.1. Anechoic boundary condition conclusion

By changing the advection scheme, a reflection factor reduction of more than 50 was observed. Test (a) was
possibly overconstrained. The imposition of Y + = 0 along y = −0.5 is one constraint which implicitly states a
relationship between ∂v

∂y and ∂p
∂y during the simulation. Likewise, for a pure sound wave propagation case, it is

better to assume neither ∂v
∂y = 0 nor ∂p

∂y = 0.
It is important to emphasize that the only technique used to mimic the anechoic boundary condition employed

for both simulations was the imposition Y + = 0 along y = −0.5. By using other techniques, such as buffer
zones and gradual acceleration of the sound speed near the boundary with the technique employed for both
simulations an even lower spurious reflection can be obtained.

5. Free Shear Layer

Different initial conditions were tested aimed at reproduce the acoustic field caused by a single pairing. By
the first technique used to generate the disturbance field presented in section 5.1, spurious acoustic waves were
created at the initial condition. Due to the periodic boundary conditions adopted for the x-direction, those
waves were present during all the simulation time. It eventually presented sound waves with amplitudes equal
or higher than those produced by the vortex pairing. With initial disturbances compounded by wave packets
no spurious acoustic waves were created at the initial conditions.

5.1. Initial conditions

For the present and following sections, the same non-dimensional scheme of section 2 is used. For the free
shear layer problem the initial condition adopts a parallel base-flow with a temperature profile proposed by
Crocco-Busemman, Fortuné, 2000. The initial velocity field takes the form: u(x, y) = tanh

(
2y
δw

)
+ up(x, y)

and v(x, y) = 0 + vp(x, y). In which up(x, y) and vp(x, y) are small disturbances of the flow. The performed
simulations had a disturbance level of:

max

[
max [up(x, y)]

Umax
;
max [vp(x, y)]

Umax

]
< 10−5

.
A number of tests were done aiming at the production of a single vortex pairing in a wide domain. In one

of them, the disturbance field:
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up(x, y) = 2
σy

δw
e
−σ

“
y2

δw

”
Lx

2π

[
A0 sin

(
2πx

Lx

)
+

A1

2
sin
(

4πx

Lx

)]
; (21)

vp(x, y) = e
−σ

“
y2

δw

” [
A0 cos

(
2πx

Lx

)
+ A1 cos

(
4πx

Lx

)]
; (22)

was multiplied by a windowing function obtained from the combination of two hyperbolic tangent functions:

fw(x, y) =
tanh [k (x− x0)] + tanh [k (x1 − x)]

2
.

Once the disturbance field was multiplied by the windowing function, ∂ρ
∂t assumed non-zero values for the whole

domain at the initial condition and spurious acoustic waves created at the initial condition disallowed the clear
observation of the pairing acoustic field.

5.1.1. Complex wave packets

This technique was used by Medeiros, 1996 to study the nonlinear behavior of modulated Tollmien-Schlichting
waves. This technique is capable of almost-punctually disturb the flow near a given point. The disturbance
contains a wide range of frequencies. Aiming at investigate the growth of Tollmien-Schlichting waves created by
a wider range of frequencies, Medeiros, 1996 used this technique. To understand this methodology, a disturbance
field generated by a single complex wave packet is described below:

up(x, y) = 2
σy

δw
e
−σ

“
y2

δw

”
A<

eıφ

nmax∑
n=1

eı
2nπ(x−xp)

Lx

ı 2πn
Lx

 ; (23)

vp(x, y) = e
−σ

“
y2

δw

”
A<

[
eıφ

(
nmax∑
n=1

eı
2nπ(x−xp)

Lx

)]
. (24)

where xp is the x coordinate where the disturbances are concentrated. A Gaussian y-profile multiply the wave
packet making the disturbances active only in the free shear layer vortical region. Depending on the phase angle
φ, different disturbance shapes, but with an identical amplitude envelope, are formed at the point xp.

It is possible to verify that this disturbance field satisfy the mass conservation law for an incompressible
flow. By substituting Eqs. (23) and (24) into the mass conservation equation:

∂up

∂x
+

∂vp

∂y
= 2

σy

δw
e
−σ

“
y2

δw

”
A<

eıφ

nmax∑
n=1

ı 2nπ
Lx

eı
2nπ(x−xp)

Lx

ı 2nπ
Lx

− 2
σy

δw
e
−σ

“
y2

δw

”
A<

[
eıφ

(
nmax∑
n=1

eı
2nπ(x−xp)

Lx

)]
;

⇒ ∂up

∂x
+

∂vp

∂y
= 2

σy

δw
e
−σ

“
y2

δw

”
A<

[
eıφ

(
nmax∑
n=1

eı
2nπ(x−xp)

Lx

)]
− 2

σy

δw
e
−σ

“
y2

δw

”
A<

[
eıφ

(
nmax∑
n=1

eı
2nπ(x−xp)

Lx

)]
;

⇒ ∂up

∂x
+

∂vp

∂y
= 0.

It means that the incompressible disturbance field hypothesis is satisfied and no spurious acoustic waves are
created at the initial condition.

For illustration purposes, we define a domain 0 ≤ x ≤ Lx = 150 and −200 ≤ y ≤ 200 and one point
xp = 75. Figs. 8 shows the contour plots of the vorticity field with a vector plot of the local velocity disturbance
compounded by Eqs. 23 and 23 for different φ values inside the previously defined domain. These figures uses
a strong zoom near the point x = xp = 75; y = 0. It is possible to observe that:

(a) For φ = −π
2 an anti-clockwise rotating vortex is found at (xp, 0) (Fig. ??);

(b) For φ = 0 two counter-rotating vortices are found at (xp, 0) (Fig. ??);

(c) For φ = π
2 an clockwise rotating vortex is found at (xp, 0)(Fig. ??);

(d) For φ = π two counter-rotating vortices are found at (xp, 0)(Fig. ??).

Some of those wave-packets shown in Fig.8 will be used to compound the final disturbance necessary to reproduce
a single vortex pairing inside a wide domain.
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(a) φ = 0 (b) φ = π
2

(c) φ = π (d) φ = 3π
2

Figure 8: Contourplot of vorticity disturbance and vector plot of local velocity disturbance produced by wave
packets with xp = 75 and with different phase angle φ. Some of those disturbances will be united to compound
the final disturbance field used to generate a single vortex pairing inside a wide domain.

5.2. Results

The domain adopted for the present formulation is 0 ≤ x ≤ Lx = 300 and −150 ≤ y ≤ 150. The mesh
used for this case was uniformely distributed along x-direction with δx = 0.6 and the y distribution was slightly
stretched with a expansion factor of 1.1 and 600 points. For non-aliasing the disturbances, a cut off wavenumber
of nmax = 80 was adopted. 4 different wave packets were used to generate the initial disturbance field. Each
one of these 4 wave packet was composed by 80 different wavelengths. The 4 employed wave packets are shown
below:

(a) Eqs. 23 and 24 with φ = π
2 and xp = 145.75;

(b) Eqs. 23 and 24 with φ = 0 and xp = 145;

(c) Eqs. 23 and 24 with φ = π
2 and xp = 154.25;

(d) Eqs. 23 and 24 with φ = π and xp = 155;

(a) and (b) wave packets were concentrated in x ≈ 146; y = 0;(c) and (d) wave packets were concentrated in
x ≈ 154; y = 0.
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The disturbances nuclei x ≈ 146 and x ≈ 154 had equal magnitude, i.e., a constant value of A was used for
each one of the wave packets presented in 5.2. The disturbances did not reached max[up(x, y)/Umax; vp(x, y)/Umax] >
10−2. During the simulation an odd symmetry around the axis defined by x = Lx/2 and y = 0 was found. The
frame sequence of Fig. 9 shows the contour plot of vorticity field along the temporal development of the vortex
pairing. It is possible to observe that the vortex pairing occurs near the point x ≈ Lx/2 = 150; y = 0, i.e., at
the center of the domain.

Fig. 10 shows the contour plots of the dilatation (∂ρ
∂t ). 40 uniformly varying levels are shown between

−3 · 10−5 and 3 · 10−5. The white region of each frame has a vorticity level above 0.1. Through this region it is
possible to observe the vortex shape dynamics. With the long x-domain, the effect of the x-direction periodic
boundary condition is not clearly observed on the acoustic field presented in Fig. 10. Through the Fig. 10, it
is possible to observe the double spiral found by Bogey et al., 2000.

6. Conclusion

In the present work, a brief overview of the verification of a code used to simulate a vortex pairing aeroa-
coustics is done against the LST results. Tests of the anechoic boundary condition were done aimed at reducing
the spurious reflection at the boundaries.

The usage of a disturbance field compounded by modulated wave packets was shown as a efficient way to
generate a single vortex pairing inside a wide x-domain of a shear layer flow under temporal development. The
results of a single vortex pairing aeroacoustics in a shear layer under temporal development with a large x-
domain are presented in section 5.2. For this case it was possible to observe and interpret the acoustic structure
patterns generated by the pairing as a double spiral, according to the previous results reported by Bogey et al.,
2000. Due to the usage of a low wavenumber cut off, secondary vortices stabilize in a short time period. Only
the begining of the pairing could be isolated.

The acoustic field generated by the pairing was found to be some scales larger than the vortices structures
on the pairing. A typical size of the vortices reproduced in the presented simulations is about LE

δw
= 4 and a

Lx

δw
= 300 x-domain was enough to capture the acoustic structures generated by the vortex pairing.
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(a) (b)

(c) (d)

Figure 9: Time development of the vorticity field during the pairing.
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(a) (b)

(c) (d)

Figure 10: Temporal development of the dilatation field (∂ρ
∂t ) during the pairing.
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